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3. P h p  A: Math. Gen. 26 (1993) 647-663. Printed in the UK 

Algebraic approximations to some integrals in optics 

B T N Evans and G R Fournier 
Defense Research Establishment Valcartier, Courceletie, Quebec GOA lR0, Canada 

Received 15 Janualy 1992, in 6nal form 14 Juiy 1992 

Abstract. A method is described for obtaining algebraic approximations to certain 
integrals lhat appears to be independent of known methods, such as Bylor, orthonormal 
tunciions. Laplace's method, etc. It resembles the numerical technique of pmduct 
integration. Often the solutions are globally valid wer the full range of each parameter. 
In some cases a trade-off can be performed telween lhe accuracy and the functional 
complexity of the solution. 

As examples, specific integrals for estimating exiinction h m  aerosols a t t  resolved. 
These analytical solutions are applicable to scattering h m  sphetes, spheroids, discs and 
infinite cjlinden. 

1. Introduction 

There are some areas in physics where an analytic approximation to an integral is 
highly desirable even though it is inexact. This is particularly true when the physical 
theory is hown to be only an approximation itself. A striking example is integrals that 
occur in the Fresnel-Huygens or Kirchhoff form of scalar dieaction theory which is 
applicable to both optics and acoustics. Aerosol scattering problems provide another 
example. In order to retain at least one of the following an approximate analytic 
solution is needed: physical insight, correct asymptotic behaviour, computational 
speed and/or computational robustness. 

This paper describes a method for obtaining algebraic approximations to certain 
integrals in optics. It resembles, but is different from, an analytic version of product 
integration [l]. 

For practical purposes, an analytic solution will mean that the result of integration 
must be represented in terms of combinations of the elementary and special functions 
of mathematical physics. 

The integrals that can be approximated by this method are the same as those 
found in integral tables but the arguments of some of the functions in the kernel are 
much more complicated. As will be shown, the main limitation of the technique is 
that there is no a'priori error estimation. 

2. Method 

This section gives the general mathematical framework required to implement the 
integration technique. 

@ 1993 Government of Canada 647 
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21. Outline of concept 
Suppose one has the following integral to perform: 

B T N Evans and G R Foumier 

where g, h and f are any continuously differentiable functions and X i ,  qj and uk 
are parameters independent of I whose domain can cover, in general, the complex 
plane. In order to refer to the whole set of parameters, define p = { X i ,  qj , uk}. As it 
stands, (1) is a general integral with a function that has a potentially very complicated 
argument h ( q j ,  I). Most integrals that have analytic solutions have simple arguments. 
The following method extends the list of analytically soluble integrals to a list that 
includes analytically approximated integrals. 

Begin by assuming that a function u(q,, h) can be found such that 

is an acceptable approximation valid over the range of integration. Here y ranges 
between a and b, and the q, are n fitting parameters. The number of fitting 
parameters m will generally depend on the functional form chosen for U. Applying 
Leibniz’s theorem for differentiation of an integral on (2): 

which gives 

~ ( q i , h ( y ) ) d h  M f (uk ,y )dy-  
Multiplying each side of (3) by g(h)  and integrating we get 

(3) 

I = L @ g ( h ) u ( h ) d h  (4) 

where a = h(qj, a) and p = h(qj, b) to simplify the notation. Whether (2) is an 
acceptable approximation will depend on the desired accuracy of (4). 

It is required that (4) be analytically integrable. It is often preferable, but not 
necessaly, that both the integrals in (2) should also be analytically integrable. It is 
clear that when approximation (2) is exact this procedure is just a variable substitution. 

Equation (2) can be further generalized to 

with ak weighting constants, keeping in mind that for each k 

Lo d h )  Uk(h) dh (6) 

must be analytically integrable. Thus for each function, uk, that satisfies the 
integrability conditions in (6). an additional functional form is found that may improve 
the approximation in (5). This concept will be made clearer by an outline of some 
possible procedures and several examples taken from actual physical problems. 
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22 Outline of a procedure 

The following subsections outline a procedure for implementing the previous concept. 

221. Finding urndidare U. In deriving a practical procedure for implementing this 
method, it is useful to prune the set of possible forms of U. The strongest constraint 
is the integrability condition (4) or (5). One way of determining part of the allowed 
set of functional forms for U is by looking up a table of definite integrals that contain 
products of g and other functions. A more general way is to consider the small list 
of general integrals [2-51. This list can be used to survey rapidly almost all hown 
analytic definite integrals. Although these integrals are .complicated, they, at the very 
least, serve as indicators as to the existence of possible forms of U. Examples from 
this list, two of which will be used, are given below. 

Equations (7) and (9) are examples of general Euler-type integrals. In (7), 2Fl is the 
Gauss hypergeometric function and GRin is Meijer's G-function. In (9), Fgi;!$ is 
a KampC de FCriet function. This double variable hypergeometric function and its 
properties are discussed at length in [6] and, more recently, in 151. One very important 
property of the Kampt de F6riet functions, that will be used in an example, occurs 
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when C and A are both zero in which case they become just the product of two 
generalized hypergeometric functions of a single variable: 

B T N Evans and G R Foumiet 

Equation (8) is a general Weyl integral over the product of a Gauss 
hypergeometric function and a Meijer's G-function. The detailed conditions of validity 
for these integrals will not be stated here so as not to sidetrack the main issues. They 
can, however, be found in the cited references. 

With these integrals the functions g and U plus the appropriate integral transform 
can be identified. Hence g or U could be either a Meijer's G-function, a generalized 
hypergeometric function, simple functions (such as z p ,  (1 - z)", en or sin(z)), etc. 
Thus most functions occurring in mathematical physics are covered. 

Additional qualitative considerations of the functional form of the right-hand side 
of (2) can further reduce the set of candidate forms for U. Some of the more obvious 
ones are the monotonicity, curvature and asymptotic behaviour in both large and 
small limits. A more subtle condition is the weighting provided by g in (4). 

222. Obtainingthefttingparameters q,. The fitting parameters, qf (In general, but not 
always, functions of ga, a and b), in (2) are obtained by some appropriate minimizing 
procedure that reduces the error in the approximation (4). This can be stated in one 
form as 

where the Min is understood to be performed for a particular set of p. The process 
is repeated over the parametric space of interest in p. If the level of error is not 
satisfactory, another candidate form for U must be tried either in (2) or (5). Note 
that fitting of ak is also required in the latter case. 

Possible minimizing strategies could include numerical methods such as quasi- 
Newton, conjugate gradient or simplex, etc. These methods initially do not produce 
analytic expressions of q, in terms of h, ga, a and b. However, provided that the 
dependency is not too complicated, acceptable functional approximations may be 
found. 

This process is complicated, can be computationally demanding and could, 
ultimately, be intractable. However, the examples in the next section show that 
often the situation can be &nsiderably simplified by relaxing the constraint equation 
(11). Indeed it will be shown that even a trial and error method for Ending U can 
often suffice. The constraint condition (11) is also reduced by first assuming that g is 
a constant, and then fitting at only a small set of points, y,, equal to the number of 
fitting parameters n. Thus (11) becomes 

The function g is only peripherally considered when choosing yr and U. As will be 
shown by examples, (12) can sometimes be solved analytically, i.e. qf in terms of h, 
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p, a and b. This simplified procedure has been shown to work for functions with 
simple forms such as monotonic ones, whose curvatures are easily modelled. 

Equation (12) can be restated as an interpolation of f ( r ) d z  by u (h )dh  at n 
points y,. At this point the procedure is similar to an analytic version of product 
integration [l, p 741. Xvo significant differences are: (1) that f ( z ) d z  is being 
interpolated instead of f(x); and (2) h is not a simple power of I. These two 
ditferences have made all our attempts to perform a general error analysis of limited 
value. For example, in performing the standard procedure 171, the upper bound to 
the error E is 

In order for this upper bound to be useful the inverse function h-' must exist over 
the range [ a ,  b] and the first term in (13) cannot have a singularity. Since the nature 
of h is unknown apriori and hence U is also unknown, no error scaling can be found. 
Each case must be evaluated individually using (13) or some other, specific method. 

3. Examples 

In this section several applications of the method to various integrals occurring in 
optical scattering theory are given. None of these can be transformed into integrals 
that have closed form solutions in terms of special functions. Moreover, since the 
parameters in each kernel can arbitrarily take on values from 0 to CO, Thylor series 
expansiow and asymptotic methods such as Laplace's or steepest descents will not 
work because of convergence problems. Since part of the kernel has a complicated 
argument, any expansion in sets of orthogonal functions will also involve this argument 
and hence will most likely make any possible solution undesirable. In all three cases, 
the solution obtained is valid globally over the complete range of each parameter in 
p. This last point will be illustrated by tables. 

3.1. Example 1 

This occurs in the study of scalar scattering from randomly oriented infinite aspect 
discs [S] (normal incidence is treated in 191, p 97). 

Qd = 2( 1 - &(Id)) with Id = 1 e-w(z) dx (14) 

where U(.) = 2is[(mz - - (1 - z)*lz], s is the particle size parameter, a 
real number varying between 0 and CO, and m is the refractive index and is hence 
complex with Re(m) varying between 1 and CO and Im(m) varying between 0 and 
-CO. Hence the magnitude of U($) varies from 0 to CO as well. 

Following the notation of the previous section, h(ql, qz,  x) = w, g(h) = e-h, 
f ( ~ )  = 1, a = 0, and b = 1. The parameters are clearly ql = s and q2 = m and 

The functional form of U is constrained by the integrability condition (4). As 
g(h) = e-h, the simplest non-trivial possible forms of u(h) are limited to or 
l/(h + c ) ~  where c and d are constants. The term 'simplest' is defined here by the 

thus P = {VI>VZI. 
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order of the hypergeometric function used. For these forms eh is a ,Fo.and l / (h+c)  
is a all other hypergeometric functions are much more complicated in their 
behaviour, computation and in the integrals that would result from this procedure. Of 
the two forms identified earlier, ce-dh gives rise to a set of transcendental equations 
that needs to be solved in order to obtain c and d. Hence first choose the form 
l / ( h +  c ) ~ ,  which produces readily solvable equations. Later, a second approximation 
using the form ce-dh will be derived. 

Euunple l(a) @sf apprarimation). The form l / ( h  + c ) ~  gives the approximation of 
I in terms of exponential integrals of order d. 

B T N Evans and G R Foumier 

Let 

Since, over the range of physical inrerast Re(m) > 1, h is a simply behaved 
Here, this function of yl, there is a simple transformation relating h to J .  

transformation U can be of the form stated earlier. Thus we have 

It is empirically found that d = 2 is a reasonably good approximation to J .  

Thus 
Fhrthermore since this form allows a madmum of three fitting parameters, n = 3. 

This set of equations can be expressed as three linear equations which are readily 
solved for ql. The values of yI were chosen so that the equations are simple, i.e. 
yi = 0, y2 = 1/2 and y3 = 1. Other sets of y1 could be used achieving a slightly 
better approximation at the expense of algebraic complexity. With the chosen set of 
yI, the solution to (17) is 

h(O)h(1/2) -2h(O)h(l) + k(l/Z)h(l) 
h(0) -2h(l/2) + h(1) 

h(1) + 42 

42 = 

43= h(1)-h(0)' 

Here the notation for h(q,, qz, yl) is simplified to h(y,) for clarity. 
Substituting these equations into (4): 
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Note that E, is the second-order exponential integral. Thus the integral (14) has 
been approximated as the difference of two second-order exponential integrals. 

Thble l(a) presents a comparison between the exact numerical calculation of Id 
and the approximation (19). 

As seen in table l(a), when the magnitude of I,, is significant the percentage error 
is relatively small. However, when the magnitude of Id approaches 0 the percentage 
error can be quite large. The latter effect is due to an error in the phase of the 
approximation with respect to the exact solution. Thii effect will occur when the 
approximation does not have the same zero crossings as the exact integral. This 
applies to any approximation technique and is therefore not specific to the present 
procedure. Note that where the approximation is matched at a zero, ie. at infinite 
refractive index, the percentage error is small. Evidently matching one or more zeros 
of the integral could be a useful criterion in the choice of an adequate form of 
h. However, in the present case the quantity of physical interest is Qd and thus, 
whenever Id is small, the percentage error in Qd will also be small. For example, for 
the worst case in table l(a), m = 2.0 and s = 5, where the error in Id is 103.7%, 
the corresponding percentage error in Qd is only 11.0%. As the next approximation 
gives simpler and more accurate we will postpone the discussion of an error bound. 

Erample l(b) (second approximation). Again let 

J(Yl) = YI 
as in (E) but now let u(h)  = q,eql*. Here d q1 and e E qz. Hence 

In (20) there are two unknowns and thus two equations or fitting points in the range 
0 < y < 1 are needed. Call these two fitting points y l  and y 2  Elimination of q2 
results in the following transcendental equation: 

Newton's method of successive approximations can be used to approximate q1 starting 
with q1 as m -+ 1. Thking yl = 1 and y2 = 1/2, as m -+ 1, choose eq@(l)-*(")) + 0, 
and eqdh(l/*)-h(")) -+ 1/2. The latter is readily solved giving 

-In2 
m-1 lim 41=~h(1/2)-h(0) '  

This result is completely consistent with (21) as m -+ 1. Using this as a fust guess in 
Newton's method and iterating once: 

This can be simplified without introducing any serious error 
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Tmbk 1. Error tables for examples l(u) and l(b> 
&ample 1(a) 

m 9 Exact Approximation Error (%) 

l.1 0.001 l-O.WO312902i I-O.W331086i 03.8 
l.1 0.01 0.999994-0.003130151 0.999993-0.00331084i O.O€NIl,S.8 
1.1 0.1 0.599439- 0.0312943i 0.999337-0.0330977i 0.01,5.8 
1.1 1 0.944813-03052861 0.935227-0.320415i 1.0,s.o 
11 2 0.79W95-0.566587i 0.758557-05815411 4.0,2.6 
l.1 5 0.0551996-0.849220i 0.0305116-0.7814811 44.7,8.0 
1.1 10 -0592805-0.237394 -0.540190-0.27222zi 8.9J4.7 

1.1 100 -0.0911145-0.058W55i -0.0989528-0.0729561i 8.6,25.6 
1.5 1 0.258516-0.932335i 0.226920-0.925756i 1220.7 
1.5 2 -0.743586-0.4655331 -0.719633-0.457902i 32,124 
1.5 5 0.490254t 0.09049i 0.416438 t0.162019i 15.1,79.0 
1.5 10 0.0836259 t0.2696681 '0.0418624+0.276025 49.9.2.4 

15 100 0.0160325-0.0253829i 0.0183567-0.0307823 14.5,21.3 
15-0.01i I 0.25309-0.911135i 0.222336-0.90455i l2.2,.72 
15-0.01i 10 0.065439tO.2205191 0.0320381 +O.U6246i 51.0,2.6 
15-0.01i 100 0.W221063-0.00340189i 0.00259562-O.W402052i 17.4,18.2 
15-0.li 1 0,207354-0.7412181 0.183119-0.734624i 11.7,.89 
15-0.li 10 0.00677562+0.0353941 i 0.0022oOol t0.0368946i 67.5,4.2 
15-li 1 0.0183699-0.107124i 0.0152086-0.014582i 17.22.4 

1.1 M 0.0609117t0.197822i 0.0487599+0.217617i 19.9.10.0 

15 50 0.0192536-0.05681621 0.0215849-0.0637607i 121,12.2 

20 1 
20 2 
20 5 
20 IO 
20 50 
20 100 
35-35 ami 
35-35 0.01 
35-35 0.05 
35-35 0.09 
Exmule l(b) 

-0.700659-0.6413351 
0.0469974t0.813015i 
0.0958382CO.345685i 

0.0216164-0.0338167i 
0.0175966-0.00939819i 
0.930190-0.06396691 
0.384032-0.314761 

-O.M89054+0.00866923i 
O.W182362+0.000190088i 

-0.158222-0.109586i 

-0,706793-0.60378Oi 
0.0734549+0.743366i 

-0.OU351873+0.373174i 
-0.164505-0.162528i 

0.0250502- 0.0426432i 
0.0725043- 0.00950006i 
0,930189-0.0640105i 
0383882-0.314941i 

-0.0268829t0.00873Mi 
0.0018238ltO.OOO182345i 

0.88,5.9 
56.3,8.6 
96.18.0 
4.0,48.3 
15.9.26.1 
27.9;l.l 
O.OW1,.068 
0.04,.042 
0.08,.77 
0.01,4.1 

~ ., 
m s FXaCt  Approximation Ermr (%) 
1.1 0.001 1-0.wO312902i 1-O.WOM1928i 43.5 
1.1 0.01 0.999994-0.003130151 0999995-0.00301927i O.Wo1,3.5 

1.1 1 0,944813-0305286i 0.950086-0.295589i 0.56,3.2 
1.1 2 0.790095-0566587i 0,808331-0.55474i 23,Z.l 

1.1 10 -0.592805-0.237394i -0.69304-0.235561i 10.9,.79 
1.1 50 0.0609117+0.197822i 0.0716946t0.177654i 17.7,lO.Z 
1.1 100 -0.0911145-0.0580755i -0,0844268-0.0481207i 7.3J7.1 
15 1 0.258516-0932335i 0.250508 -0.930355i 3.1,021 
1.5 2 - 0,743586-0.465533i -0,736335-0.452007i 1.0,z.g 
1.5 5 0.490254t0.09049i 0.484817+0.1137911 1.1.25.7 
1.5 10 0.0836259t0.269668i 0.0820465tO.263631i 1.9,22 
1.5 50 0.0192536-0.0568162i 0.0170664-0.055599Ii 11.4,21 
1.5 100 0.0160325-0.0253829i 0.0152596-0.0257732 4.8.1.5 
1.5-0.01i 1 0.75309-0.911135i 0,245337-0.908895i 3.1,.25 

1.5-0.01i 1W 0.00221063-0.00340189i 0.00213159-0.00341096i 3.6.0.3 

1.1 0.1 0.999439-0.0312943i 0.999494-0.03(11864i 0.0055,3.5 

1.1 5 0.0551996-0.84922Oi 0.0858266-0.887196 555,4.5 

1.5-0.01i 10 0.065439t0220519i 0.0644749 tO.216257i 1.5,1.9 
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Tabk 1. (continued) 

m 9 Fxact Approximation - r w  
15-0.li 1 O.zw354-0.741218i 0.201352-0.73717Zi 2 9 , s  
15-0.li Io 0.00677562+0.0353941i 0.W691929 +O.O35498i 21.0.3 
1.5-li 1 0.0183699-0.107124i 
20 1 -0.700659- 0.641335i 
20 2 0.0469974+0813015i 
20 5 0.0958382+0345685 
20 10 -0.158222-al09S88 
20 50 0.0216164-0.0338167i 
20 1w 0.0175966-0.w939819i 
35-35 ami 0,930190-0.06396691 

0.0168085-0.1047871 8.5;ZZ 
-0.703720-0.672919i 0.44,29 

O.OSS%~I +o.ngsw 25.5,4.1 
O.M69472+0.369546i 40.46.9 

-0.164528-al28163i 4.0,17.0 
0.0213706-0.0369586i 1.1,9.3 
0.0190871-0.W888136i 85,55 
a93oisa-o.o63wm o.ooo2,.oso 

35-351 0.01 0.384032- 0.314763i a383921 - 0.3148951 0.029..042 
3 5 - 5  a05 -0.0289054+0.0085692i -aM88888+am871857i 0.057,.57 
35-3% 0.09 0.0018u62+0.00019w88i ~00182374~0.00018435i 0.0066.3.0 

Equation (24) has a worst error throughout the complex plane of 0.65% (which occurs 
as m - CO). The other fitting parameter q2 is easily expressed in terms of ql: 

With q1 as in (24) and q2 as in (U) the tinal result is 

Bble l(b) is similar to table l (a)  but with approximation (26) replacing 
approximation (19). 

The numerical values in table l(b) behave in a similar fashion to those in 
table l(u). Hence large percentage errors occur near the zeros of Id and the worst 
error in the table is at m = 2.0 and s = 5. But table l(b) shows that (26), even 
though it is simpler, is almost always a better approximation to Id than (19). This 
simpler result was obtained at the cost of having to analyse a transcendental equation 
(21). This was relatively simple in the present a s e  but may not always be so. 

Using (13) and series expansions of (14) and (26), the behaviour of the error in 
this approximation can be explored. After some straightforward algebra, the absolute 
error, E, can be shown to scale as follows: 

[ezis - I]/S m i c a  
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Figure 1. A plot of h(B) and J(0)  against B for various values of r (example 2). 

3.2. Example 2 
The integral in this example is taken from [SI and [lo]. As in the previous example, 
it occurs in the scalar theoly of electromagnetic and acoustic scattering. This integral 
accounts for the effect of edge scattering from randomly oriented prolate spheroids 
of arbitrary aspect ratio. 

I, = Psin(e) exp(-cU ( ~ / P S ) ' / ~ ~ F ~ [ - $ ,  ; ;g 1 - ( l /PZ)])d@ (27) 

where s, r and eo are constants and P = [cosZ(@) + Wr this case r, 
the aspect ratio, can vary from 1 to CO, s, again the size parameter, can vary from 0 
to CO and the Wck constant, e, zz 1. 

Identify h with 2Fl[-$,$;1; 1 - ( l / P z ) ] / P z / 3 ,  g ( X , , h )  with eXlh, f with 
Psin(@), U = O~and b = ~ / 2 .  R r  the parameters, A, = c ~ ( r / s ) ~ / ~ ,  and 
771 = "1 = r. Thus 63 = {A1,77,}. 

.qY,) = J Psin(e)de 

Let 
Y I  

0 

I = T [J- 1 - - € 2 +  sin-'(.) 
2 e 

1 - T 2 [ c o s ( y d \ / l = G z +  E 

sin-'(Ecos(yl)) 

and 

2 = I - I/?. (28) 

Figure 1 is a plot of h ( @ )  and J(@)  against @ for various values of T. These 
curves are very similar and it is evident that there should be a simple transformation 
that would take one function into the other. 
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Empirically d = 2 is a reasonably good approximation to the curvature of J for 
the same functional form for U as in example l(u). As before, this form gives the 
maximum number of three fitting parameters, i.e. n = 3. Thus, again, 

As before, the values of yf were chosen to keep the equations simple, i.e. y1 = 0, 
y2 = x/4 and y3 = r/2 With the chosen set of yf and using the fact that h(0) = 1, 
the solution to (29) is 

h ( r / 2 )  - 1 
7 =  J(?r/2) . 

Substituting these equations into (4), 

with a h(r /2) .  ?able 2 presents the error between the exact 
numerically calculated value of I, and (31) for a wide range of r and s values. 

For an aspect ratio of 1, the approximation is equal to I, exactly for any size 
parameter s. The error is greatest for a given r when s is small. This is once again 
due to the presence of a zero in the integral for s = 0. The approximation is exact 
(Le. equal to 0) for s = 0, however the asymptotic behaviour as s approaches 0 is 
not quite correct This is not important for the physical problem of edge scattering 
since the real quantity of interest is related to 2 - I e ( s ) / I e ( m ) .  

A proper discussion of an error bound to this example is of limited use since the 
inverse of h must be obtained numerically. 

3.3. &ample 3 

This example occurred in the study of scattering from randomly oriented infinite 
cylinders ([S, 9, p 313,11,12, p 2901). The quantity of physical interest in cylindrical 
scattering theory is Q ,  the extinction efficiency and is given by 

h(0) = 1 and p 

If = lT’2JI(w)sin2(B)dB. (34) 
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where N, is the first-order Strwe function, 5, is the first-order Bessel function and 
w = z~[(m~-~s*(e))~/~--sin(e)]. Thesize parameter scanvaryfromot0 co,Re(m) 
can wry from 1 to CO, and Im(m) from 0 to -CO. Again m is the index of refraction. 

III integral (33) h = w / ~ s ,  g ( A , , h )  = H , ( A , ~ ) ,  f ( e )  = &(e), a = 0, 
and b = r/L The parameters are A, = 2s and 7, = m. Thus p = {Al,ql). 
Again the integrability condition (4) must be satisfied. Since g ( A , , h )  = H,(A,h) = 
,F2[1;3/2,5/2;-X~h2/4],  (33) can be transformed into an integral of a form similar 
to (9). Considering (lo), the hypergeometric representation of H I  as given earlier 
and in (9), then the choices for U will be ‘restricted’ to a general hypergeometric 

F . However, since attention must be given to the computational feasibility of the 
solution, only the lowest order hypergeometric functions should be considered. Note 
also that the exponent of the variable h in the chosen hypergeometric function must 
be 2 in accordance with (9). 

B T N Evans and G R Foumier 

P P  

Let 

Index m 

...... 1.5 ----_ 
-.._ -- ...__.___ 

.~.-~-~~~~..~....-.~- ..... ......_____ ____._ .___ ,. .__ 

0 i o  20 30 40 50 60 70 80 90 
Orientation angle 

FLgvrr 2 A plot of h(6)  and J ( 6 )  against 8 (example 3) Id and lhe approximation 
(19). 

Figure 2 is a plot of h(0) and J ( e )  against B. Again as in the previous example, 
these curves are similar in that they are both monotonic with gentle curvature. Given 
the restrictions placed on U as detailed earlier, the simplest hypergeometric function 
that can be used is &[; ch2] = ech*. In this case the approximation to J would be 
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Tsble 2 Error table for a m p l e  2 

Asoect Size 
mtio parameter Exact Appmximation Enor(%) 

I. 0 1 h 
1.25 
1.25 
1.25 
1.25 
1.25 
1.25 
1.25 
IS 
15 
1.5 
1.5 
1.5 
1.5 
1.5 
2.0 
2.0 
2.0 
20 
20 
2.0 
2.0 
5.0 
5.0 
5.0 
5.0 
5.0 
5.0 
5.0 

IO 
IO 
10 
10 
10 
10 
10 

100 
100 
100 
100 
100 
100 
100 
104 
104 
104 
105 
105 
106 

0.01 
0.1 
1 
2 
5 
10 

100 
0.01 
0.1 
1 
2 
5 

10 
100 

0.01 
0.1 
1 
2 
5 

IO 
100 

0.01 
0.1 
1 
2 
5 

10 
100 

0.01 
0.1 
1 
2 
5 

10 
100 

0.01 
0.1 
1 
2 
5 

10 
100 

0.01 
1 

100 
0.01 

100 
0.01 

I ,  
3.65592~ 
0.0153844 
0.456008 
0.645879 
0.847290 

1.12007 
1.92704x IO-' 
0.0230733 
0.549222 
0.764053 
0.989166 
1.10846 
1.29101 
1.45147~ lob7 
0.0419768 
0.74745312 
1.01026 
1.28302 
1.42612 

0.954m 

1.64362 
3.89743X 10-6 
0.385611 
1.97382 
255329 
3.12749 
3.42199 
3.8627 
1.22907 x 
0.385611 
4.02320 
5.14791 
624900 
680926 
7.64262 

4.03452 
40.6192 
51.7342 
625487 
68.02Mf 
76.1406 

406254 
7613.79 
0.147756 

0.~014741 

o.oi4m6 

76137.9 
1.41756 

3.10578xl0-9 

a453797 
0.0149671 

0.643957 
0.845950 
0.953836 
1.11984 
1.57466xlO-' 
0.0222162 
0.54745706 
0,761085 
0.987146 
1.10705 
1.29G57 

0.0404307 
0.14740096 
1.00589 
1.28007 
1.42407 

1.20570~ 10-7 

1.64311 
3.61508~ 
0.380045 
1.95165 
253113 
3.10992 
3.40885 
3.85911 
1.17944 x 
0.380045 
3.96007 
5.08044 
619179 

39.7725 
50.7669 
61.6353 
67.2530 
75.8643 
0.014492 
3974.18 
7576.89 
0.144931 
757648 
1.44923 

E.05 
2.71 
0.48 
0.30 
0.16 
0.10 
0.02 

18.29 
3.71 
0.64 
0.39 
0.20 

0.03 

3.68 
0.10 
0.43 
0.23 
0.14 
0.03 
7.24 
1.44 
1.12 
0.87 
0.56 
0.38 
0.09 
4.04 
1.44 
157 
1.31 
0.92 
0.65~ 
0.17 
212 
1.35 
208 
1.87 
1.46 
1.14 
0.36 
1.92 
217 
0.48 
1.91 
0.49 
1.92 

a13 

16.9 

106 100 761379. 757639. 0.49 
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Choosing yl = 0, y2 = 1 and y, = ?r/2 and solving for the fitting parameters: 

-7r/4 
" = Erf[q,h(O)] -Erf[q2h(?r/2)] 

43 = -41Erf[q,h(O)l 

and q2 is the root of 

(37) 

In this situation we annot  solve for one of the fitting parameters, q2 explicitly. 
The solution of (38) must, therefore, be approximated by some simple analytic 
function. This can be done by replacing the Erf functions in (38) with their Erst- 
order asymptotic expansion. This is justified since it can be shown that qZh(yI) is 
always greater than 1.49. Doing this, the limiting function, both for large and small 
Abs(m - l), is 

Since the asymptotic expansion has the worst error for small Abs(m - l), all other 
values of m will produce a better approximation. When this approximation is used 
an error of 1% or less is introduced in the calculation. 

Applying the method to (33) with this information: 

(40) 
where in the last equation the KampB de FBriet functions have been reduced from 

With the same substitutions used to obtain the solution to (33), equation (34) 
F2'" 22;o to Fi:$ since a set of coefficients coincided. 

becomes 
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where U, and U, are Lommel functions of two variables [13,14]. 
Schemes for evaluating Kampe de Firiet and Lnmmel functions are given in [16]. 

These algorithms are derived from the concepts found in [5,13,15,16]. 
It may seem that I: and I,” are more easily computed by numerical integration of 

(33) and (34) than by using approximations (40) and (41). However, (32) requires the 
calculation of the Suuve function and Bessel functions at arbitrary complex values for 
every point considered in the numerical integration scheme. In contrast (40) and (41) 
requires the evaluation of, at most, 30 integer-order Bessel and exponential integral 
functions. In practice, the approximations are orders of magnitude faster than the 
numerical calculation. 

lhbk 3. E m r  table for Q.. 

m ,a Exact Approximation Ermr (%) 

1.1-0.1i 05 0.183i792 ai779059 2 9  
1.1-0.1i 1 0.36489~ a3534534 3.1 
1.1-0.1i 5 1.476016 1.452150 1.6 
1.3-0.01i 0.01 0.0003780 0.0003735 1.2 
13-0.Oli 0.1 0.00674M) 0.0064846 3.8 
13-0.01i a5 0.0980497 0.0923592 5.8 
13-0.0li 1 0.345219 0.325103 5.8 
1.34 ’ , 0.5 1.138432 1,136944 0.1 
1.3-i I 1.627256 1.624300 0.2 
1.3-i 5 1,987548 1.987380 0.008 
1.5-0.01i 0.01 0.0004215 0.0004172 1.0 
1.5-0.01i 0.1 0.611543 0.011174 3.3 
1.5-0.01i 0.5 0.224886 0215881 4.0 
15-0.01i 1 0.80ii48 a773416 3s 
1.5-0.01i 10 2.369586 2.364842 0.2 
1.5-0.li ~ 05 0.351618 0343325 2 4  
1.5-0.li 1 0.954629 0.931818 24 
1.5-0.Ii 5 2.09136 207590 0.5 
1.5-i 05 1.184728 1.142128 3.6 
1.5-i 1 1.700268 1.696536 0.2 
20-0.li 05 0.~22910~ a8112036 1.4 
2.0-0.li 1 2192642 2177689 a 7  

Bble 3 is a table of representative errors of Q,. Note that Q, approaches 2 
for large s and any m, as predicted by Babinet’s principle of diffraction from large 
objects. 

4. Integrals involving the exponential function 

This section indicates how this integration technique allows for a bade-off between 
the complexity of the special function used and the accuracy of the solution. Since 
several of the examples shown in the last section involve integrals over the exponential 
function of a complicated argument, this form of integral will be used to demonstrate 
the trade-off. (It is not coincidental that integrals over the exponential function are 
common since they are specific cases of general diffraction-type integrals.) 
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Consider the integral 

I = J," eh(z)f(x) do. 

The technique then requires 

If one chooses the form of u(h)  to be a polynomial of h with integer powers, the 
resulting approximation to I will be in terms of a sum of exponential integrals. Thus 

where m and n are any positive integers or zero. Choosing u(h)  to be a polynomial 
of h with rational, real or complex powers, then the approximation becomes a series 
of incomplete gamma functions. Hence, 

m 

= C a k  ( r [ m  + i,h(a)i - r i m  + 1,h(b)i) 
k=-n 

h ( a )  and h(b )  # 0 
m 

= x a k ( r [ d k )  f 1, h(b)I - 7 [ p ( k )  + l ,h (a ) l )  
k=U 

R e [ ~ ( k ) l +  1 > 0. (45) 
Clearly, as one increases the number of terms in the polynomial representation of 

u(h) ,  the accuracy of the solution will be improved at the cost of adding additional 
terms. This allows for balancing solution complexity against accuracy. 

5. Conclusions and discussion 

A method for obtaining an analytic approximation to integrals that may have 
complicated functions in their kernels was developed. Several examples from 
physical optics were given. The technique sometimes produces a compact form 
that is more easily calculable. It allows the approximation of integrals for which 
standard approaches fail. There is also the possibility of trade-offs between functional 
complexity of the solution and accuracy. The solutions are often globally valid over 
the full range of each parameter. 

As the technique is quite general, error bound estimation is difficult and further 
work is needed. Currently, the only useful approach is case by case. 

Not all of these advantages may occur when using the technique. When compact 
forms can be achieved not only can the integral then be rapidly computed but 
considerable gains in physical insight can follow. Having the ability to compute 
rapidly, even approximately, difficult integrals is a fundamental requirement in design 
and inverse problem where parameters have to be varied over large ranges and 
statistics established for the sensitivity of the results. 
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